
4 Determinant. Properties

Let me start with a system of two linear equation:

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2.

I multiply the first equation by a22, second by a12 and subtract the second one from the first one. I
get

x1(a11a22 − a21a12) = b1a22 − b2a12.

Now I multiply the second equation by a11, first by a21, and subtract the first one from the second
one:

x2(a11a22 − a21a12) = a11b2 − a21b1.

Assuming that a11a22 − a21a12 ̸= 0 I get the solution

x1 =
b1a22 − b2a12
a11a22 − a21a12

,

x2 =
a11b2 − a21b1
a11a22 − a21a12

.

The expressions in numerator and denominator have certain symmetry and I am tempted to introduce
a definition for such objects. Namely, I define the determinant of a 2× 2 matrix A = [aij ] as

detA = det

[
a11 a12
a21 a22

]
=

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

Then, if I also introduce the matrices

B1 =

[
b1 a12
b2 a22

]
, B2 =

[
a11 b1
a21 b2

]
,

then I can rewrite my solution in the following elegant form

x1 =
detB1

detA
, x2 =

detB2

detA
.

It turns out that it is also possible to define the determinant for square matrices of an arbitrary
size but any definition by a formula does not really look motivated (in part, due to the reasons that all
the general formulas for the determinant of an arbitrary size square matrix look really complicated),
and this served in part as a reason to abandon determinants from courses of linear algebra. On the
other hand determinants are indispensable for many theoretical concepts in mathematics and basically
unavoidable1. Hence, as a compromise, I will introduce the determinant by its properties and only
after it I will present several (not extremely useful computationally) formulas for the determinant.
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understanding of determinants

1



The properties of the determinant are motivated by the fact that the determinant of a 2× 2 matrix,
how I defined it above, has a very simple geometric meaning.

Let A = [aij ]2×2 and I introduce two column vectors

a1 =

[
a11
a21

]
, a2 =

[
a12
a22

]
,

such that my matrix is A = [a1 | a2]. These two vectors define a parallelogram on the plane, which
has as its two sides these two vectors. The value | detA| = |a11a22 − a12a21| is actually the area of
this parallelogram (see Fig. 4.1 for two examples).

Exercise 1. Can you prove the last claim?

Figure 4.1: Geometric meaning of the determinant. R2 is on the left and R3 is on the right.

Therefore, I will think of the properties of a determinant of an arbitrary square matrix as the
properties that should be in place for the volume of a parallelogram defined by the columns of this
matrix (Fig. 4.1). I note that I allow negative values for the determinant and hence talk about the
signed volume.

First, the determinant must be linear in each argument. This technically means that I postulate
that (all the bold small letters denote column vectors with n components).

det[a1 | . . . | αak + bk | . . . | an] = α det[a1 | . . . | ak | . . . | an] + det[a1 | . . . | bk | . . . | an]. (4.1)

Here α is some scalar. The “volume justification” is that the usual formula tells me that the volume is
equal to the area times height, and if my vector multiplied by a constant α then, intuitively, the height
is also multiplied by the same constant; if a vector is the sum of two vectors then the corresponding
height is also the sum of two heights.

Intuitively, the volume of a parallelogram, which is built on some vectors such that two of them
coincide, should be zero (think, e.g., of a three dimensional case). That is

det[a1 | . . . | αak | . . . | ak | . . . | an] = 0. (4.2)
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Note that the properties (4.1) and (4.2) together imply that

det[a1 | . . . | aj + αak | . . . | ak | . . .an] = det[a1 | . . . | aj | . . . | ak | . . . | an].

In words, an elementary column operation of the third type does not change the determinant.
Another important implication is that if I exchange the order of two columns in the matrix the

determinant will change its sign. Here is a simple proof of this fact. Let me fix all the columns in
the matrix except columns i and j and consider the determinant as a function of these two columns,
which I will denote f(a, b). Now, using (4.1) and (4.2), I get

0 = f(a+ b,a+ b) = f(a, b) + f(a, b) + f(b,a) + f(b, b) = f(a, b) + f(b,a).

And finally, I will need a normalization. Namely (and quite naturally), I postulate that

det I = 1. (4.3)

It turns out that (4.1), (4.2), and (4.3) define a unique function on the collection of all possible
square matrices. A proof that this function is unique will be given later, but now I will show that
a lot of other properties can be deduced from my assumptions (4.1), (4.2), and (4.3) (which, by the
way, are easily checked for the 2× 2 case, I invite the reader to do these computations).

Proposition 4.1. Let A be a square matrix.

1. If A has a zero column then detA = 0.

2. If A is a diagonal matrix then detA = a11 . . . ann.

3. If A is a triangular matrix then detA = a11 . . . ann.

4. A is invertible if and only if detA ̸= 0.

5. det(αA) = αn detA.

Proof. 1. By (4.1) det[a1 | . . . | 0 | . . . | an] = 0 det[a1 | . . . | 0 | . . . | an] = 0.
2. Since for the diagonal matrix I can factor out all the diagonal elements and get the identity

matrix, the conclusion follows.
3. If a triangular matrix has a zero on the main diagonal then, by the elementary column opera-

tions, I can always reduce it to a matrix with a zero column, and hence the determinant will be zero,
due to Claim 1. If there are no zero elements on the main diagonal then by the third type column
operations I can reduce my matrix to the diagonal one with the same diagonal elements. These op-
erations does not change the determinant. Now applying already proved Claim 2 I get the desired
result.

The reasonings above actually give a computational recipe to calculate the determinant. Namely,
using the elementary column operations of the first and third type (if you are not very comfortable
with column operations, do row operations on A⊤ and then transpose the final result again) find the
column echelon form, which is a triangular matrix, keeping track of the number of times you switched
two columns, say, k times. The determinant of the triangular matrix is the product of the diagonal
elements, and to get the determinant of the original matrix one just needs to multiply it by (−1)k. By
the way, recall that a square matrix is invertible if and only if its row (or, similarly, column) reduced
echelon form is the identity matrix, and hence this computational procedure proves Claim 4.

The last point follows from (4.1). �
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Exercise 2. Carefully write down a proof for claim 4 in the proposition.

Example 4.2. Compute

det

 0 1 2
−1 0 −3
2 3 0

 .

Note that  0 1 2
−1 0 −3
2 3 0

 →

1 0 2
0 −1 −3
3 2 0

 →

1 0 2
0 −1 −3
0 2 −6

 →

1 0 2
0 −1 −3
0 0 −12

 .

The determinant of the last matrix is 1 · (−1) · (−12) = 12. I recall that while I was row reducing the
matrix, I switch columns once. Therefore the determinant of the original matrix is −12.

Corollary 4.3. The system Ax = b with a square matrix A has a unique solution if and only if
detA ̸= 0

Lemma 4.4. Let A be a square matrix and E be an elementary matrix of the same size. Then

det(AE) = detAdetE.

Proof. Since E = IE and det I = 1, I know determinants of any elementary matrix. (If the previous
sentence is not clear: Take, e.g., the elementary column operation of the first type; I know that the
multiplication from the right by an elementary matrix of type 1 changes two columns, therefore, using
the properties of the determinant, I conclude that the determinant of this elementary matrix must
be −1; analogously for other elementary matrices.) Since the multiplication by an elementary matrix
amounts to an elementary column operation, the conclusion follows. �

Corollary 4.5. For elementary matrices E1, . . . ,Ek

det(AE1 . . .Ek) = detA detE1 . . .detEk.

Theorem 4.6. For square matrices A, B:

1. detA = detA⊤.

2. det(AB) = detA detB.

Proof. 1. I will rely on two facts. First, for any elementary matrix E I have detE = detE⊤, which
can be checked by direct calculations. Second, if A is not invertible then A⊤ is also not invertible and
both determinants are zero, hence it is sufficient to prove the claim only for the invertible matrices.

Let A be invertible, then it can be represented as a product of elementary matrices

A = E1 . . .Ek.

Taking the transpose of both sides, using Corollary 4.5, and the fact that detE = detE⊤ conclude
the proof.

2. If B is invertible, the proof follows from the fact that B can be represented as a product
of elementary matrices and Corollary 4.5. If B is not invertible then the product AB is also not
invertible (why?) and I get 0 = 0. �
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Exercise 3. Prove that if B is not invertible then AB for any A is also not invertible.

Remark 4.7. The first point in the last theorem actually tells us that everything which was said
about properties of determinants with respect to elementary column operations is true for elementary
row operations.

Remark 4.8. Since the properties of determinants are so important, let me list them again, all
together. Here A is a square matrix.

1. Determinant is linear in each row (column) when the other rows or columns are kept fixed.

2. det(αA) = αn detA.

3. If two rows (columns) are switched the determinant changes its sign.

4. If there is a zero column or row then detA = 0.

5. For a triangular matrix detA is equal to the product of the elements on the main diagonal. In
particular, det I = 1.

6. detA = 0 if and only if A is not invertible (or, equivalently, detA ̸= 0 if and only if A is
invertible).

7. Ax = b has a unique solution if and only if detA ̸= 0.

8. detA does not change is we perform elementary row or column operations of the third type
(take a row or a column, multiply by a constant, and add to another row or column).

9. detA = detA⊤.

10. det(AB) = detA detB.

11. detA−1 = (detA)−1.

So, we know a lot properties of determinants, the row or column operations allow us to calculate the
determinants. Do we need anything else? Actually, yes. We are still lacking a proof of uniqueness of a
determinant (note that existence is actually guaranteed by the finite number of elementary operations
required to put a given matrix into a reduced row or column echelon form). We still have no proof that
if we perform the elementary operations in different orders we’ll end up with the same answer. For
this we need to show that our property (4.1)–(4.3) define a unique function, which would guarantee
that the determinant is unique.
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